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Highlights 

• DL models enable the estimation of VF loss from OCTA images with high 

accuracy.  

• Applying DL to the OCTA images may enhance clinical decision making. 

• It may improve risk stratification of patients at risk for central VF damage. 
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Abstract 

Purpose:To develop deep learning (DL) models estimating the central visual field 

(VF) from optical coherence tomography angiography (OCTA) vessel density (VD) 

measurements. 

Design: Development and validation of a Deep Learning model 

Methods:A total of 105110-2 VF OCTA pairs from healthy, glaucoma suspects, and 

glaucoma eyes were included. DL models were trained on enface macula VD 

images from OCTA to estimate 10-2 mean deviation (MD), pattern standard 

deviation (PSD), 68 total deviation (TD) and pattern deviation (PD) values and 

compared with a linear regression (LR) model with the same input. Accuracy of the 

models was evaluated by calculating the average mean absolute error (MAE) and 

the R2 (Squared Pearson correlation coefficients) of the estimated and actual VF 

values. 

Results: DL models predicting 10-2 MD achieved R2 of 0.85 (95% confidence 

interval [CI], 74–0.92) for 10-2 MD and MAEs of 1.76 dB (95% CI, 1.39–2.17 dB) for 

MD. This was significantly better than mean linear estimates for 10-2 MD. The DL 

model outperformed the LR model for the estimation of pointwise TD values with an 
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average MAE of 2.48 dB (95% CI: 1.99, 3.02) and R2 of 0.69 (95% CI: 0.57, 0.76) 

over all test points. The DL model outperformed the LR model for the estimation of 

all sectors. 

Conclusions:DL models enable the estimation of VF loss from OCTA images with 

high accuracy. Applying DL to the OCTA images may enhance clinical decision 

making. It also may improve individualized patient care and risk stratification of 

patients who are at risk for central VF damage. 

 

Keywords: Glaucoma, Optical Coherence Tomography Angiography, 10-2, Visual 

Field, Artificial Intelligence, Deep Learning. 

 

Introduction 

Glaucoma is a progressive disease associated with characteristic structural 

changes to the eye and loss of visual function.1 Early diagnosis and monitoring 

of disease progression are crucial to prevent significant loss of vision and 

blindness.1,2  

Visual field (VF) testing is among the most important tool for the diagnosis 

and monitoring of glaucoma. VF results are crucial for estimating the current level 

and future risk of functional impairment for individuals affected by this 

disease.2,3 Although VF damage in glaucoma predominantly affects the peripheral 

field in most patients, glaucomatous damage to the central field has been found to 

occur more often than expected, even in the early stages of the disease. More than 
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50% of eyes with mild to moderate glaucoma had defects within the central ±3°.3,4  

Moreover, the 24-2 VF test misses central macular damage confirmed by the 10-2 

VF test.5 In addition, the central VF is an important predictor of vision-related quality 

of life.6,7 Therefore, being able to detect glaucomatous central VF damage effectively 

is important in the clinical management of glaucoma patients. 

  A recognized limitation with VF testing is the high test variability, which can 

make it difficult to detect true change over time.8,9 A high variability can result in 

missed or late identification of glaucomatous progression, and this then delays 

interventions with consequent worse visual outcomes.9-11 Moreover, it is time-

consuming and costly to carry out a 10-2 VF test in addition to a central 24-degree 

VF test with sufficient frequency.11  

Optical Coherence Tomography Angiography (OCTA) is a noninvasive optical 

imaging technology that provides information about retinal vasculature in the form of 

vessel density (VD) measurements.12 Prior studies have shown that OCTA VD is 

lower in glaucoma and these measurements are associated with VF mean deviation 

(MD).13,14 When performed with OCT, OCTA enhances early diagnosis, detection of 

progression, and risk assessment of glaucoma.15,16 Moreover, it is notable that 

OCTA measurements continue to provide valuable information even when OCT 

measurements have reached their lower limit.17 The longitudinal correlation between 

macular VD with 10–2 MD has been shown to be higher than that of macular 

ganglion cell complex and 10-2 MD.18 Macular OCTA has good reproducibility and 

repeatability over time.19-21 It could therefore be beneficial to estimate VF sensitivity 

in the central 10° from OCTA. While DL techniques have shown promise in 

improving the correlation between ganglion cell measurements obtained from OCT 

and central visual field damage,22 there is still limited information regarding the 
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relationship between superficial macula microvasculature damage and visual 

function. 

Unlike conventional statistical tools, deep learning (DL) does not make 

assumptions to adequately model relevant structure-function relationships. Prior 

studies have focused on Artificial Intelligence (AI) algorithms for evaluating 24-2 or 

10-2 VF metrics using SD-OCT measurements.22-29 The aim of the present study 

was to develop and validate a DL model to estimate the 10-2 global metrics and 

pointwise (total deviation (TD) and pattern deviation (PD)) values from macular 

OCTA scans.  

 

 

 

Methods 

The cohort included healthy, glaucoma suspect, and glaucoma participants. 

These participants were followed up with semiannual visits, which included OCTA 

imaging and VF testing. Study participants were selected from participants in the 

Diagnostic Innovations in Glaucoma Study (DIGS) at the University of California, San 

Diego (UCSD) and from the medical records of patients examined in the Glaucoma 

Clinic (GC) at the UCSD Shiley Eye Institute. The DIGS is an ongoing prospective, 

longitudinal study conducted at the Hamilton Glaucoma Center, UCSD. Details of the 

DIGS protocol have been described elsewhere.30 All methods adhered to the tenets 

of the Declaration of Helsinki and the Health Insurance Portability and Accountability 

Act and were approved by the UCSD Institutional Review Board. Written informed 

consent was obtained from all subjects in DIGS and GC patients. 
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  To be included in the study, participants had to meet the following criteria at 

study entry: 20/40 or better best-corrected visual acuity, at least 2 consecutive 

reliable standard automated perimetry VF tests, and intraocular pressure of less than 

22 mmHg for healthy participants.22 24-2 VF tests with reliable results (false Positive 

≤15%; false negative ≤33%; and fixation loss ≤33%) were included. For this analysis, 

inclusion in the glaucoma group required repeatable, abnormal 24-2 VF results, 

defined as a glaucoma hemifield test (GHT) outside normal limits or a pattern 

standard deviation (PSD) with a p-value <0.05. Inclusion in the glaucoma suspect 

group required the presence of visible glaucomatous optic neuropathy on fundus 

photographs without repeated, abnormal VF results. The healthy group consisted of 

participants without detectable glaucomatous optic neuropathy on fundus 

photography or optic nerve head examination, or repeatable abnormal 24-2 VF 

results.   

OCTA Images 

The commercially available Avanti Angiovue (Optovue Inc. Fremont, 

California) combines OCTA and OCT imaging in a single system (software version 

2018.1.1.63). The Avanti system for measuring VD and tissue thickness has been 

described previously.31 

 For macular OCTA images, VD at the superficial macular slab was obtained 

from 6- × 6-mm2 OCTA images comprised of 304 × 304 A-scans centered on the 

fovea. OCTA VD was calculated from the same scan slab, as follows. The Avanti 

AngioVue OCTA system uses the split-spectrum amplitude-decorrelation 

angiography method to capture the dynamic motion of the red blood cells and 

provide a high-resolution 3-dimensional visualization of perfused retinal vasculature 

at various user-defined layers of the retina at the capillary level.31 VD was calculated 
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as the percent area occupied by flowing blood vessels in the selected region defined 

as pixels having decorrelation values above a set threshold level. The retinal layers 

of each scan were segmented automatically by the AngioVue software to visualize 

the superficial retinal capillary plexuses in a slab from the internal limiting membrane 

to 10µm above the inner plexiform layer. For this study, whole en face image VD 

(wiVD) was derived from the entire 6×6-mm2 scan, and perifoveal VD was measured 

in an annular region centered on the fovea with an inner diameter of 1 mm and outer 

diameter of 6 mm. 

OCTA image quality review was completed according to University of 

California San Diego Imaging Data Evaluation and Analysis reading center standard 

protocol. Segmentation errors were manually corrected. Images with a quality index 

(QI) of <4, poor clarity, residual motion artifacts visible as irregular vessel patterns, or 

disc boundaries on the enface angiogram, image cropping, or local weak signal due 

to vitreous opacity, or segmentation errors that could not be corrected were 

excluded. 

VF testing was performed at each visit for all participants using 10-2 testing 

patterns and the Swedish interactive thresholding algorithm standard protocol 

(Humphrey Field Analyzer II; Carl Zeiss Meditec, Inc). 10-2 VF test results that 

showed more than 33% fixation losses, 33% false-negative errors, or 15% false-

positive errors were excluded. VF results were processed and evaluated for quality 

according to standard protocols by the University of California, San Diego, Visual 

Field Assessment Center. Quantitative global VF metrics including mean deviation 

(MD) and pattern standard deviation (PSD) along with total deviation (TD) and 

pattern deviation (PD) values at individual 68 test locations were included in the 

analysis.  
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For each eye, the OCTA images were paired with the 10-2 test results 

acquired closest in time and within 180 days. This resulted in a set of 1051 OCTA 

and 10-2 VF pairs. These datasets were used to train and evaluate all models 

described herein. 

Training the Deep Learning Models 

The DL architecture used in this study was ResNet50.32 A transfer 

learning approach was adopted by initializing model weights by training on a large, 

general image recognition dataset (ImageNet).33 In order to match image dimensions 

expected by the pretrained network, macula VD image were resized to a size of 

224 × 224 pixels, and pixel values were replicated in each red-green-blue color 

channel. Model weights were then fine-tuned on training dataset of OCTA VF pairs. 

DL regression neural networks were constructed to estimate quantitative VF metrics 

(MD, PSD, TD, and PD) for 10-2 results based on VDs. Notably, models were 

provided with only OCTA enface image, and no labels indicating disease status or 

severity. The linear regression (LR) model was fitted using the training dataset of 

OCTA VF pairs. Both the DL and the LR models were evaluated on testing data.  

To construct independent datasets for training, validation, and testing, the 

dataset was divided randomly by participant in an 80%–10%–10% split. The training, 

validation, and testing datasets were separated by participant instead of image in 

order to avoid patient scans being included in both the training and validation or test 

set. Augmented data were generated by applying random geometric transformations 

to the VD, including random horizontal flipping as well as random rotations, random 

cropping, and scaling. The models were trained for 100 epochs with a batch size of 

32 ( except for pointwise prediction that we used a batch size of 64) and a learning 
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rate of 0.001 using optimized by the Adam optimizer.34 The Rectified Linear Unit 

(ReLU) was used as activation function for ResNets. To preserve the spatial 

information encoded in the feature maps, the final global average pooling layer was 

replaced by a fully-connected layer in the sector-wise and point-wise models. The 

final model was selected after periodic evaluation of the validation set. Notably, no 

clinical assumptions were explicitly included in the model (e.g., superior hemiretina is 

associated with inferior hemiretina). Therefore, no previous clinical knowledge was 

used to derive the topographic relationship. DL training and testing were performed 

using Pytorch libraries.35 

Evaluating Structure–Function Estimates 

Testing data were used to evaluate the training models using the mean 

absolute error (MAE) and R2 (squared Pearson correlation coefficient) metrics. LR 

models were also constructed to estimate VF metrics using OCTA images as a basis 

for comparison. LR is a straightforward and widely used method as a baseline for 

comparing with more complex models (i.e., DL) and numerous previous studies have 

used it for evaluation of the relationship between structure and function.22,36,37 It also 

allows us to determine if the additional complexity of DL provides a significant 

improvement in predictive accuracy. The LR model was implemented using the 

Scikit-learn package.38 Each 2D image was transformed into a 1D vector, and all 

224*224 pixels were used as inputs for both global and pointwise predictions. The 

LR models were trained with the same data split as the DL models.  

Separate analyses were performed, and principal component analysis 

(PCA)39 was employed to reduce the dimensionality of the image, address the 

correlation between pixels, and extract features from en face OCTA images. For TD 

                  



11 
 

and MD prediction, threshold sensitivity values in VF were converted from decibels 

(dB) to 1/Lambert values with the following formula: 1/Lambert=10dB/10. LR was 

applied to the extracted features and predicted VF metrics. Then, the results were 

converted to (dB) scale.  

To summarize the sectoral performance of the models, we averaged the 

measured TD and PD values for the 10-2 clusters proposed by Hood et al., as 

demonstrated in Figure 1.40 We then predicted sectoral VF sensitivity based on DL 

and LR.  

Performance of different models was evaluated at 3 different levels: a) Global 

MAE/R2 for MD and PSD, b) Pointwise and average MAE/R2 for 68 VF points (TD 

and PD), and c) For each sector of the VF map (as demonstrated in Figure 1), the 

sectorial mean MAE/R2 is averaged over the VF points within each sector. 

Performance of different models at the global level was also evaluated in 4 

different categories (Healthy, glaucoma suspect, mild glaucoma (24-2 MD≥-6), and 

moderate to advanced glaucoma (24-2 MD<-6)) 

Visualizing the Structure–Function Relationship 

In order to identify which regions of the OCTA images contributed most to 

model decisions, we computed class activation maps (CAMs) using the trained DL 

models.41  We used a version of Grad-CAM that extended original techniques to 

regression models.42 These maps quantify the contribution of each pixel in the input 

images (layer VD maps) to the model prediction. The resulting heat map is 

superimposed on the OCTA image to visualize the retinal regions utilized by the 

model to perform its prediction. CAM images were generated for each of the OCTAs 

in the testing set.  
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Statistical Analysis 

A bootstrap resampling procedure was used to estimate 95% confidence 

intervals (CIs) for MAE and squared Pearson correlation coefficient .43 R2 between 

predictions and measured values were compared with a test of equality of 

correlations.44 The cluster of data for the study subject was used as the unit of 

resampling since multiple measurements of the same subject are likely to be 

correlated. In order to compare the MAEs of the estimated and the actual 

measurements between the DL and the LR models, a random-effects mixed model 

was used to account for multiple tests from the same participant.45 P-values of less 

than 0.05 were considered statistically significant. 

 

Results 

A summary of the study population used to train and test models to estimate 

10-2 VF results is provided (Table 1).  

The dataset comprised 1051 pairs of 10-2 VF tests and OCTA scans of 384 

separate individuals. A total of 616 individual eyes were included and the majority 

were diagnosed with glaucoma (n = 353, 57.3%). Glaucoma suspect eyes (n = 131, 

21.3%), and healthy eyes (n =132, 21.4%) eyes were also included. The mean age 

(95% CI) in healthy, glaucoma suspects, and glaucoma groups was 59.5 (95% CI: 

53.2, 65.8), 62.9 (95% CI: 59.7, 66.1), and 67.5 (95% CI: 0.55, 1.05) years old, 

respectively. The mean image quality in healthy, glaucoma suspects, and glaucoma 

groups was 7.5 (95% CI: 7.1, 7.9), 7.2 (95% CI: 6.8, 7.6), and 6.6 (95% CI: 6.3, 6.9), 

respectively. 
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 Table 2 compares the performance of the DL and LR models for 10-2 MD 

and PSD estimation. The DL approach significantly (P < 0.001) outperformed the LR 

model, for both R2 and MAE. 

The mean (95% CI) MAE and R2 between the DL predicted and ground truth 

MD were 1.76 (95% CI: 1.39, 2.17) dB and 0.85 (95% CI: 0.74, 0.92) dB which were 

significantly better than those of LR (MAE =3.36 (95% CI: 2.58, 4.22) dB, R2=0.34 

(95% CI: 0.18, 0.50), P<0.001). Similarly, for 10-2 PSD predictions, the MAE and R2 

were 0.79 dB (95% CI: 0.55, 1.05), and 0.89 (95% CI: 0.82, 0.95) for the DL model, 

and 2.57 dB (95% CI: 2.05, 3.10) dB, and 0.29 (95% CI: 0.14, 0.47) for the LR 

model, respectively, (P<0.001). Our separate analysis using PCA and non-dB values 

of VFs as ground truths showed similar results. DL outperformed LR in all the 

analyses in the prediction of MD and PSD (P<0.001), Supplementary Table 1. 

The performance of DL and LR in each severity group (healthy, suspect, 

early, moderate to advanced) eyes are provided in Table 2. Our results showed that 

DL outperformed the prediction based on LR in all healthy, suspect, early, and 

moderate to advanced eyes (All P<0.04 for MAE and R2) except for, R2 in the 

prediction of MD (P =1.0), and PSD (P=0.60) in healthy eyes, MAE in the prediction 

of MD for glaucoma suspects eyes (P=0.16), and R2 in the prediction of MD (P=0.28) 

and PSD (P=0.48) in glaucoma suspect eyes. 

 Similar results were found for point-wise comparisons (Figure 2 and 

supplementary Figure1). The DL model outperformed the LR model in pointwise 

prediction of TD measurements. Pointwise comparison of the predicted 68 TD values 

revealed an MAE of 2.48(95% CI: 1.99, 3.02) dB and the R2 of 0.69(95% CI: 0.57, 

0.76). Pointwise prediction based on DL were significantly better than those based 
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LR model, which achieved pointwise MAE =4.28 (95% CI: 3.46, 5.15) dB, and 

R2=0.19 (95% CI: 0.09, 0.30), P < 0.001), (Figure1). Similarly, DL model achieved an 

MAE dB 2.08 (95% CI: 1.61, 2.63) and R2 of 0.67 (95% CI: 0.54, 0.76) in estimating 

PD points. This was significantly better than pointwise PD estimation based on LR 

model (3.73 dB (95% CI: 2.96, 4.57) dB, and 0.12 (95% CI: 0.05, 0.21), P < 0.001), 

(Supplementary Figure1). Our separate analysis using PCA and non-dB values of 

VFs as ground truths showed similar results. DL outperformed LR in all the analyses 

in the pointwise prediction of TDs and PDs measurements (P<0.001), 

Supplementary Table 1. 

Figure 3 displays a matrix of correlations between pairs of predicted TD 

values at different 10-2 VF test locations. Each subplot shows the correlation 

between the TD prediction at one location and those at all other locations. This figure 

illustrates that the predicted TD values display are highly correlated for adjacent 

locations with the correlation decreasing as the distance between the test locations 

of interest increases.  

Table 3 illustrates the predictive performance of the DL and LR models over 

the different sectors of the 10-2 VF map defined in Figure 1 based on mean TD 

values. DL has significantly lower TD MAE and higher R2 than LR for all sector 

predictions (All P<0.001, except for superior temporal band R2: P=0.009). The DL TD 

MAE ranged from 1.45 (1.16, 1.79) dB (R2= 0.82 (0.64, 0.91) in the inferior temporal 

sector to MAE 2.99 (2.21, 3.78)dB (R2=0.75(0.58, 0.88)) in the superior nasal sector 

of 10-2 VF. Supplementary Table 2 illustrates the predictive performance of the DL 

and LR models over different sectors of the 10-2 VF map for mean PD values. The 

DL PD MAE ranged from MAE of 1.35 (0.94, 1.83)dB (R2=0.65 (0.40, 0.87)) in the  

inferior temporal sector to 2.91 (2.31, 3.59)dB (R2=0.81 (0.67, 0.90) in the superior 
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temporal sector of 10-2 VF. Similarly, DL has significantly lower PD MAE and higher 

R2 than LR for prediction of 10-2 sectors for all sectors (All P<0.001 except for 

superior temporal band R2: P=0.02). Our separate analysis using PCA and non-dB 

values of VFs as ground truths showed similar results. DL outperformed LR in all the 

analyses in the prediction of sectors based on TDs and PDs measurements (P<0.02 

and P<0.04, respectively), Supplementary Table 3 and 4. 

The scatter plots of Figure 4 illustrate the relationship between the estimated and 

ground truth VF values (MD and PSD) for both the DL and LR models. The DL 

estimates are in much closer agreement with the groundtruth than those of LR.  

In addition, Supplementary Figure 2 shows the predictive performance of the DL 

model across the continuum of actual 10-2 TD measurements.” 

To help understand how the DL models estimate VF metrics, we applied 

visualization techniques to highlight informative image regions. The resulting images 

are shown along with corresponding VD and VF groundtruth in Figure 5. The 

activation maps shows that the model relies on the anatomically correct regions to 

make its prediction. Moreover, supplementary Figure 3 shows the two cases where 

DL did not perform well in the prediction of MD and PSD. 

Discussion 

Given the impact of 10-2 on assessment of quality of life46 and central 

damage in early glaucoma patients47, accurate methods for estimating central VF are 

important. In the present study, DL approaches estimated VF MD and PSD using 

macula-centered OCTA scans with a high accuracy and outperformed estimates 

based on LR mean VD. DL approaches also outperformed LR for prediction of 

individual test locations of 10-2 VF map. Moreover, in the sector-wise analysis, the 
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MAEs ranged from 1.45 (1.16, 1.79)dB to 2.99 (2.21, 3.78)dB depending on the 

sectors and outperformed LR prediction.  

Our DL model's accurate prediction of central VF from macular OCTA scans 

can assist clinicians in providing better individualized patient care for glaucoma. This 

is because estimation through DL is less prone to the natural variability of VF, which 

can be a challenge in assessing functional loss from structure.48,49 Additionally, DL 

estimation can be performed with less burden on clinical settings in terms of time 

and cost, compared to obtaining a reliable central VF through 10-2 testing. Given 

extra amount of time required for performing a reliable central VF and also 

considering its variability, the proposed DL approach may decrease the number of 

VF exams needed for monitoring central damage in glaucoma. The impact of 

COVID-19 on our clinical practice,50 further emphasizes the potential value of the DL 

approach in reducing the number of patient visits for disease monitoring. Therefore, 

using macular OCTA scans has the potential to reduce the need for central 10 VF 

testing.    

 In previous studies, a priori information on spatial information, and the form of 

the relationship between structural and functional measurements (e.g., linear or 

logarithmic) was used. For example, the displacement of the retinal ganglion cells 

(RGC) from the fovea was taken into account.51-55 Raza et al. found improvements in 

structure function correlations after considering this displacement.55 The variation in 

fovea-optic disc distance has also been proposed as a potentially important factor.56 

Notably, these studies reported the relationship between structure (i.e., OCT 

thickness) and function in glaucoma, with the strength of the association ranging 

from almost fair relationship to a strong structure–function correlation.14,18,57-60 

Nevertheless, the structure-function relationship in glaucoma is considered to be 
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nonlinear.61-64 We hypothesized that the DL model could learn the influence of 

anatomical variations from the OCTA scans. Therefore, this information was not 

separately included as prior information during training. CAM visualization supports 

that the model was well trained to predict VF parameters based on corresponding 

regions of OCTA scans. DL models can also learn anatomical features of the macula 

from OCTA scans. More importantly, they can comprehend the correspondence of 

central VF locations with regions of the macula without assumptions about the nature 

of the structure function relationship.   

Structural and functional damage caused by glaucoma typically follows 

distinct patterns, with correlations existing between specific locations of loss.65-67 In 

Figure 3, we explore the correlation between the TD values at each test location of 

the central VF with all the other 67 test locations. The locations immediately below or 

above the temporal horizontal meridian appear to be independent, which is 

consistent with the fact that glaucomatous damage respects the temporal horizontal 

raphe.68,69 

Several groups also have applied DL strategies to estimate 24-2 and 10-2 VF 

outcomes. Some previous studies used VF results as input to predict subsequent 

VF.70,71 Other estimated VF parameters through various OCT inputs.23,24,72-

74 Christopher et al, also predicted 10-2 MD (MAE=1.9 dB, R2= 0.82)  and 10-2 PSD 

(MAE=1.5 dB, R2= 0.69) from combination of all layers of macula thickness map 

scans.23 Hashimoto et al., used a convolutional neural network (CNN) model to 

predict 10-2 VF from the thickness of the three macular layers and achieved an MAE 

of 2.84±2.98 dB (R2= 0.74) .75 Kamalipour et al, also predicted 10-2 map with MAE of 

2.88 dB(R2= 0.55) for MD and MAE of 2.31 dB(R2= 0.35) for PSD from 

circumpapillary spectral-domain optical coherence tomography (SD-OCT) RNFL 
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thickness measurements.36 The reported test–retest variabilities in VF tests are 

between 1 and 2 dB (central area) and 4–6 dB (at 27°).76,77 The R2 and MAE values 

in the current study are better than previous published studies for MD (MAE:1.76 

(1.39, 2.17), R2 : 0.85 (0.74, 0.92)) and PSD (MAE: 0.79 (0.55, 1.05), R2 : 0.89 (0.82, 

0.95)). However, it is challenging to compare results across studies due to 

differences in study populations and disease severity. In each of these studies, the 

more severe disease the poorer the prediction.23,24,36,72-74 Direct comparison between 

OCTA and OCT DL predictions of 10-2 VF using the same study population is 

needed to determine whether OCTA provides better prediction than OCT. 

Previous studies have reported that OCTA may be particularly useful in eyes 

with more severe glaucoma as it continues to provide valuable information even 

when OCT measurements have reached their lower limit.17 The benefits of DL over 

LR in Table 2 are particularly pronounced in Moderate/Advanced glaucoma eyes, 

with the MAE being reduced by more than half. This is despite the fact that functional 

measures are less reliable in severely damaged areas. Indeed, it appears that the 

DL-estimated measures are better for eyes with advanced glaucoma in Figure 4 than 

the measured 10-2. This suggests that the potential benefits of the DL technique with 

OCTA are highest when glaucoma is most severe. 

There are few studies comparing the performance of combined OCT and 

OCTA metrics to individual OCT- and OCTA-based models,16,59,78,79 with promising 

findings for diagnostic accuracy for glaucoma detection and the evaluation of 

structure-function relationship.16,59,78,79  Also, Shoji and colleagues demonstrated that 

serial macular OCTA measurements were able to detect microvascular loss in 

glaucoma eyes without apparent evidence of ganglion cell complex (GCC) thickness 

alteration over an average follow-up duration of <14 months.79 In addition, Hou et al 
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reported that in the POAG group, more than two-thirds of the eyes showed faster 

macular vessel density decrease than GCC thinning; faster macular vessel density 

decrease rate was associated significantly with worse glaucoma severity over 2.6 

years of follow-up.80 Moreover, it has recently been shown that longitudinal OCTA 

measurements may complement OCT-derived structural metrics for the evaluation of 

functional VF loss in patients with glaucoma.16 Therefore, it seems that OCTA may 

be able to complement OCT metrics for central VF prediction. 

The point-wise prediction is especially crucial when considering the future 

application of DL models in real-world clinical settings. A few studies estimated 68 

points of VF based on OCT.36,72,75,81,82 Asano et al., used a CNN model to estimate 

10-2 test points from the combined OCT-measured macular retinal layers’ 

thicknesses with MAE of 9.5 ± 9.4 and 9.4 ± 9.3 dB Using VGG and ResNet 

models.81 Similarly, Kamalipour et al, also predicted 10-2 maps with an MAE of 4.04 

dB from circumpapillary SD-OCT RNFL thickness measurements.36 In our current 

study, we estimated 68 points of VF with an MAE of 2.48 (R2=0.69) based on macula 

OCTA scans. Considering the inherent variability of individual VF test locations and 

the severity of VF damage at these locations, which can vary up to 4.4 dB in different 

24-2 VF test locations,25 our DL model performed well and better than published 

studies in point-wise estimation of 10-2 VF. 

Sector-wise and point-wise analyses revealed that prediction accuracy in 

terms of MAE was better in the infero-temporal area compared to other areas. This 

was consistent with previous predictions of inferotemporal regions of 10-2 VF.36,75,81 

Weber et al reported that there is a preserved ‘centro-coecal isle’ corresponding to 

the maculopapillary bundle (the least vulnerable region to glaucomatous damage) in 

infero-temporal area which is 'still functioning and maintaining the rest of the VF in 
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patients with advanced glaucoma,40,83  The smaller absolute prediction error values 

in this area may be due to the relatively preserved visual sensitivity in this region and 

therefore low values for TD and PD. Smaller TD and PD values will result in lower 

MAE.  Moreover, the smaller variation of visual sensitivity in this area may be 

another possible reason. 

 This study has some limitations. First, we did not include an external independent 

test set to estimate the generalizability of our results to other populations. As the 

performance of the model is generally lower in external test sets,84 future studies 

utilizing other external large datasets are necessary to validate our current 

estimations. Furthermore, we excluded OCT-A scans with poor quality, which might 

have led to better model performance than if real-world scans were included.85 In 

addition, the image quality varies among different groups, including healthy, suspect, 

and glaucoma eyes. Lower image quality can affect DL prediction since blurry 

images can decrease the variance between adjacent pixels. We have reported 

previously that around 11% of OCTA images have segmentation errors that need 

correction, and that the segmentation error in 3.4% of images cannot be corrected.85 

Therefore, our model may work better on images without segmentation errors. In 

addition, DL did not perform similarly across all severities. VF values were 

overpredicted in less severe MDs (healthy or glaucoma suspect eyes) and 

underestimated in severe cases, although there were some cases that had good 

predictions. While prediction using DL algorithms from images is promising, this 

study was not longitudinal and did not aim to assess glaucoma progression. Future 

studies are needed to evaluate the role of DL in the prediction of VF progression 

using OCTA. 
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In conclusion, DL-based estimates of 10-2 VFs from OCTA scan showed high 

accuracy in estimating global and point-wise functional loss. These results suggest 

that OCTA information can be exploited for improved management of glaucoma. By 

applying DL to OCTA images, clinical decision-making, personalized patient care, 

and risk stratification may be improved for individuals with central VF damage. 
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Figure1. Sectoral 10-2 visual field (VF) map (right eye view). The 68 individual 10-2 

VF test points were clustered as suggested by Hood et al.40 Note that this map 

assumes 5 distinct VF zones based on their vulnerability to damage in the macula. 

Zone 1 = superior nasal (SN) zone; zone 2 = superior temporal (ST) zone; zone 

3 = superior temporal band (STB) zone; zone 4 = inferior temporal (IT) zone; and 

zone 5 = inferior nasal (IN) zone. 
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Figure 2. Models’ performance for the total deviation estimation of individual 10-2 

test points (Right eye view). The top row illustrates pointwise mean absolute errors 

(MAE) and the R2 between estimated and the actual 10-2 total deviation (TD) values 

for the deep learning (DL) models. MAE is shown on the left and on R2 the right. The 

bottom row illustrates the same quantities for the LR models. Darker color represents 

the test points with a higher MAE and a higher R2.  
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Figure 3. Correlation between total deviations (TD) predicted for each location and 

the 67 remaining test locations of the 10-2 VF. Darker colors indicate higher 

correlation. Correlation declines as distance increases between the location of 

interest and the other locations in the visual field. Correlations are very low for pairs 

of locations in opposite hemifields, except in the nasal region. This confirms that 

similar to glaucoma pattern damage in retinal ganglion cells, vessel density loss also 

respects to the temporal raphe. 
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Figure 4. Scatterplots of the estimates of 10-2 mean deviation (MD) and pattern 

standard deviation (PSD) vs. the measured groundtruth values in decibels, for deep 

learning (DL) (A and C) and linear regression (LR) (B and D). 
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Figure 5. Visualizations of regions used by the deep learning models to estimate 10-

2 visual field (VF) MD. Macular vessel densities are shown along with activation 

maps and VF groundtruth. Activation maps indicate the areas of the macula vessel 

density maps that are most important to the deep learning (DL) model 

predictions.(brighter regions as shown in the color bar). Both examples are left eyes. 

 

Supplementary Figure 1. Models’ performance for the pattern deviation estimation 

of individual 10-2 test points (Right eye view). The top row illustrates pointwise mean 

absolute errors (MAE) and the R2 between estimated and the actual 10-2 pattern 

deviation (PD) values for the deep learning (DL) models. MAE is shown on the left 

and on R2 the right. The bottom row illustrates the same quantities for the LR 

models. Darker color represents the test points with a higher MAE and a higher R2.  
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Supplementary Figure 2. Histogram illustrating the distribution of the actual 10-2 

total deviation values in the test set. The mean absolute errors (MAEs) between the 

ResNet50 model estimations using macula vessel density images and the actual 10-

2 total deviation values are averaged according to the actual 10-2 values (dashed 

line). The dotted horizontal line represents the average MAE of the ResNet50 model. 

 

Supplementary Figure 3. Visualizations of regions used by the deep learning 

models to estimate 10-2 visual field (VF) MD. Macular vessel densities are shown 

along with activation maps and VF groundtruth. Activation maps are shown for two 
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examples in which the deep learning (DL) model inaccurately estimated the 10-2 

MD. Activation maps indicate the areas of the macula vessel density maps that are 

most important to the DL model predictions (brighter regions as shown in the color 

bar). Both examples are left eyes. 

 

Table 1. Summary of the 10-2 Diagnostic Innovations in Glaucoma Study Datasets 

Characteristic Training and 
validation set 

Test set Total 

Participants, n(%) 352( 91.7) 32 (8.3) 384 (100) 
  DIGS 277(91.4) 26(8.6) 303(100) 
  VO 75(92.6) 6(7.4) 81(100) 
Eyes, n( %) 567(92.0) 49 (8.0) 616 (100) 
  DIGS 452(91.5) 42(8.5) 494(100) 
  VO 115(94.3) 7(5.7) 122(100) 
OCTA and VF pairs 965(91.8) 86 (8.2) 1051(100) 
  DIGS 812(91.2) 78(8.8) 890(100) 
  VO 153(95.0) 8(5.0) 161(100) 
Age (yrs) 66.9 (65.3,68.4) 65.1 (60.6,69.6) 66.7 (65.2,68.2) 
Sex (female), n (%) 191 (93.6) 13(6.4) 204(100) 
Ethnicity, n (%)    

     African American 60 (88.2) 8 (11.8) 68 (100) 
     Non-African American 292 (92.4) 24(7.6) 316 (100) 

 Diagnosis by eye, n (%)    

     Healthy 121 (91.7) 11(8.3) 132(100) 
     Glaucoma suspect 112 (85.5) 19(14.5) 131 (100) 

     Glaucoma 334(94.6) 19(5.4) 353(100) 
10-2 MD, dB -3.4 (-3.8,-3.0) -2.8 (-4.2,-1.5) -3.3 (-3.7,-3.0) 

10-2 PSD, dB 3.9 (3.6,4.2) 3.1 (2.2,4.0) 3.9 (3.6,4.1) 
OCTA vessel density, % 42.9 (42.5,43.2) 44.4 (43.1,45.6)  43.0 (42.5,43.2) 

VF: visual field, OCT: optical coherence angiography, MD: mean deviation, PSD: pattern standard 
deviation, n: number, VO: Viterbi Ophthalmology, DIGS: Diagnostic Innovations in Glaucoma 
Study. Data are represented as n (%) for categorical and mean ± standard deviation for continuous 
variables.  
 

 

Table 2. Performance of the deep learning and Linear regression models for prediction of central visual field 

mean deviation (MD) and pattern standard deviation (PSD) measurements from macular optical coherence 

tomography Angiography (OCTA) scans. 

Global 10-2 VF 

Estimations 

DL LR 

MAE, dB (95% CI) R2 (95% CI) MAE, dB (95% CI) R2 (95% CI) 

Direct prediction     

10-2 MD 1.76 (1.39, 2.17) 0.85 (0.74, 0.92) 3.36 (2.58, 4. 22) 0.34 (0.18, 0.50) 

10-2 PSD 0.79 (0.55, 1.05) 0.89 (0.82, 0.95)          2.57 (2.05, 3.10) 0.29 (0.14, 0.47) 
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Prediction in different 

categories     

 Healthy      

10-2 MD 1.46 (0.90, 2.45) 0.10 (0.01, 0.39)           2.44 (1.65, 3.32) 0.10 (0.01, 0.46) 

10-2 PSD 0.29 (0.19, 0.41) 0.07 (0.00, 0.30)           1.71 (1.19, 2.27) 0.14 (0.01, 0.59) 

Glaucoma suspect      

10-2 MD 1.35 (1.00, 1.98) 0.02 (0.00, 0.16)           1.60 (1.17, 2.16) 0.15 (0.00, 0.47) 

10-2 PSD 0.32 (0.23, 0.48) 0.11 (0.00, 0.34)                           1.26 (0.83, 1.77) 0.06 (0.00, 0.39) 

Early glaucoma     

10-2 MD 1.50 (1.04, 2.02) 0.61 (0.00, 0.82)            2.90 (2.05, 3.93) 0.12 (0.00, 0.61) 

10-2 PSD 1.14 (0.48, 1.93) 0.87 (0.13, 0.99)            3.22 (2.16, 4.41) 0.13 (0.00,0.54) 

Moderate to advanced     

10-2 MD 3.31 (1.78, 4.62) 0.87 (0.60, 0.97)           8.65 (3.93, 13.40) 0.18 (0.01,1.0) 

10-2 PSD 2.63 (1.80, 3.39) 0.74 (0.38, 0.98)            5.81 (3.28, 8.35) 0.18 (0.01.1.0) 

DL: Deep Learning, LR: Linear regression, TD: total deviation, MD: mean deviation, PSD: pattern standard deviation, VF: 

visual field, MAE: mean absolute error. In all comparisons, DL was significantly better than LR (All p<0.001) for direct MD and 

PSD prediction. DL outperformed the prediction based on LR in all healthy, suspect, early, and moderate to advanced eyes 

(All P<0.04 for MAE and R2) except for R2 in the prediction of MD (P =1.0), and PSD (P=0.60) in healthy eyes, MAE in 

prediction of MD for glaucoma suspects eyes (P=0.16), R2 in the prediction of MD (P=0.28) and PSD (P=0.48) in glaucoma 

suspect eyes. 

 

Table 3. Performance of the two models (Deep Learning and Linear Regression) for prediction of sectoral mean 

TD values in 10-2 VF Map. 

Sectors DL LR 

          MAE, dB (95% CI) R2 (95% CI) MAE, dB (95% CI) R2 (95% CI) 

Superior nasal 2.99 (2.21, 3.78) 0.75(0.58, 0.88)        5.39 (4.20, 6.64) 0.30 (0.14, 0.47) 

Superior temporal 2.75 (1.95, 3.66) 0.71 (0.54, 0.84) 4.85 (3.68, 6.15) 0.25 (0.10, 0.41) 

Superior temporal band 2.14 (1.50, 3.01) 0.27(0.11, 0.50) 2.34 (1.65, 3.32) 0.08 (0.01, 0.23) 

Inferior nasal 2.70 (1.98, 3.52) 0.79 (0.67, 0.90)       4.52 (3.25, 5.99) 0.27 (0.12, 0.43) 

Inferior Temporal 1.45 (1.16, 1.79) 0.82 (0.64, 0.91) 2.58 (1.94, 3.30) 0.27 (0.12, 0.43) 

DL: Deep Learning, LR: Linear regression, TD: total deviation, MD: mean deviation, VF: visual field, MAE: mean absolute 

error.* 10-2 VF map was clustered into 5 separate zones as proposed by Hood  et al.,.40 In all comparisons DL was significantly 

better than LR(All p<0.001).  
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Supplementary Table 1. Performance of the deep learning and Linear regression models for prediction of 

central visual field mean deviation (MD) and pattern standard deviation (PSD) measurements from macular 

optical coherence tomography Angiography (OCTA) scans. 

Global and 

pointwise 10-2 VF 

Estimations 

DL LRa 

MAE, dB (95% CI) R2 (95% CI) MAE, dB (95% CI) R2 (95% CI) 

Direct prediction     

10-2 MDb 
1.76 (1.39, 2.17) 0.85 (0.74, 0.92) 3.23 (2.53, 4.00) 0.45 (0.29, 0.59) 

10-2 PSD 0.79 (0.55, 1.05) 0.89 (0.82, 0.95)          2.59 (2.12, 3.07) 0.34 (0.19, 0.50) 

Pointwise prediction     

10-2 TDsb 
2.48(1.99, 3.02) 0.69 (0.57, 0.76)          3.67 (2.78, 4.66) 0.27 (0.16, 0.38) 

10-2 PDs 2.08 (1.61, 2.63) 0.67 (0.54, 0.76)          3.52 (2.73, 4.37)           0.16 (0.08, 0.26) 

DL: Deep Learning, LR: Linear regression, TD: total deviation, MD: mean deviation, PSD: pattern standard deviation, VF: 

visual field, MAE: mean absolute error. a: LR after applying PCA on OCTA images. b: MD and TD values were transformed 

to non-dB scale for prediction based on LR and the final results were converted to (dB) scale. 

 

Supplementary Table 2. Performance of the two models (DL and LR) for prediction of sectoral mean PD values in 

10-2 VF Map 

Sectors DL LR 

MAE, dB (95% CI) R2 (95% CI) MAE, dB (95% CI) R2 (95% CI) 

Superior nasal 2.85 (2.20, 3.57) 0.77(0.55, 0.92)        4.66 (3.50, 5.91) 0.24 (0.08, 0.42) 

Superior temporal 2.91 (2.31, 3.59) 0.81 (0.67, 0.90) 4.22 (3.08, 5.53) 0.16 (0.03, 0.30) 

Superior temporal band 2.36 (1.84, 3.19) 0.35(0.04, 0.66) 1.84 (1.19, 2.88) 0.01 (0.00, 0.05) 

Inferior nasal 2.25 (1.50, 3.20) 0.87 (0.71, 0.95)  3.89 (2.70, 5.30) 0.18 (0.05, 0.34) 

Inferior temporal 1.35 (0.94, 1.83) 0.65 (0.40, 0.87) 1.88(1.35, 2.50) 0.14 (0.02, 0.30) 

DL: Deep Learning, LR: Linear regression, PD: pattern deviation, MD: mean deviation, VF: visual field, MAE: mean absolute 

error.* 10-2 VF map was clustered into 5 zones as proposed by Hood et al.,.40 In all comparisons, DL was significantly better 

than LR(All p<0.001). 

 

Supplementary Table 3. Performance of the two models (Deep Learning and Linear Regression) for prediction of 

sectoral mean TD values in 10-2 VF Map. 

Sectorsb DL LRa 

          MAE, dB (95% CI) R2 (95% CI) MAE, dB (95% CI) R2 (95% CI) 

Superior nasal 2.99 (2.21, 3.78) 0.75(0.58, 0.88)        4.38 (3.06, 5.89) 0.41 (0.21, 0.59) 

Superior temporal 2.75 (1.95, 3.66) 0.71 (0.54, 0.84) 4.00 (2.69, 5.43) 0.36 (0.18, 0.52) 

Superior temporal band 2.14 (1.50, 3.01) 0.27(0.11, 0.50) 2.09 (1.40, 3.12) 0.13 (0.04, 0.29) 

Inferior nasal 2.70 (1.98, 3.52) 0.79 (0.67, 0.90)       4.14 (2.82, 5.72) 0.27 (0.13, 0.46) 

Inferior Temporal 1.45 (1.16, 1.79) 0.82 (0.64, 0.91) 2.29 (1.69, 3.02) 0.36 (0.19, 0.52) 
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DL: Deep Learning, LR: Linear regression, TD: total deviation, MD: mean deviation, VF: visual field, MAE: mean absolute 

error.* 10-2 VF map was clustered into 5 separate zones as proposed by Hood  et al.,.40 In all comparisons, DL was 

significantly better than LR (All p<0.02, except for the comparison between MAEs (P=0.82) and R2 (P=0.95) in the superior 

temporal band. a: LR after applying PCA on OCTA images. b: Average TD values were in the non-dB scale for prediction 

based on LR and the final results were converted to the (dB) scale. 

 

 

Supplementary Table 4. Performance of the two models (DL and LR) for prediction of sectoral mean PD values in 

10-2 VF Map 

Sectors DL LRa 

MAE, dB (95% CI) R2 (95% CI) MAE, dB (95% CI) R2 (95% CI) 

Superior nasal 2.85 (2.20, 3.57) 0.77(0.55, 0.92)        4.47 (3.39, 5.67) 0.34 (0.16, 0.51) 

Superior temporal 2.91 (2.31, 3.59) 0.81 (0.67, 0.90) 4.03 (2.92, 5.22) 0.26 (0.11, 0.41) 

Superior temporal band 2.36 (1.84, 3.19) 0.35(0.04, 0.66) 1.66 (1.05, 2.64) 0.01 (0.00, 0.05) 

Inferior nasal 2.25 (1.50, 3.20) 0.87 (0.71, 0.95)  3.80 (2.61, 5.20) 0.22 (0.10, 0.36) 

Inferior temporal 1.35 (0.94, 1.83) 0.65 (0.40, 0.87) 1.77 (1.26, 2.39) 0.19 (0.07, 0.34) 

DL: Deep Learning, LR: Linear regression, PD: pattern deviation, MD: mean deviation, VF: visual field, MAE: mean absolute 

error.* 10-2 VF map was clustered into 5 zones as proposed by Hood et al.,.40 In all comparisons, DL was significantly better 

than LR (All p<0.04, except for the comparison between R2 (P=0.72) in the superior temporal band. a: LR after applying PCA 

on OCTA images.  
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